La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.
  • 1952 : Walter Baade découvre un nouveau genre d'étoile Céphéide variable, impliquant une nouvelle valeur de la constante de Hubble. D'autres corrections apportées à la mesure de cette constante permettent de rendre l'estimation de l'âge de l'Univers davantage compatible avec celui des diffèrents objets célestes.
  • 1963 : Maarten Schmidt découvre un nouveau type d'objet astronomique plus tard appelé "Quasar". Les observations montrent qu'on en trouve surtout à une distance importante, ce sont donc des objets anciens, en contradiction avec le principe cosmologique parfait, ce qui porte un coup au modèle stationnaire de l'Univers.

Victoire du Big Bang, rejet de l'Univers stationnaire

Entre les années 1950 et 1960, les données expérimentales vont s'accumuler en faveur du Big Bang, excluant de plus en plus la théorie de l'état stationnaire.

Découverte du fond diffus cosmologique

La découverte du fond diffus cosmologique en 1965 porte un coup sérieux à la théorie de l'Univers stationnaire et semble au contraire une confirmation solide de celle du Big Bang. La présence de ce fond y est en effet très naturelle : si l'Univers a traversé une phase très chaude, le rayonnement devait dominer. En se découplant du reste de la matière, il a refroidi avec l'expansion jusqu'à atteindre sa température actuelle d'environ 3 K. Son spectre est alors très caractéristique, puisque c'est celui d'un corps noir à cette température. L'Univers stationnaire possède aussi un fond de rayonnement mais aux caractéristiques bien différentes. Celui-ci est d'origine stellaire : le rayonnement émis par les étoiles emplit l'espace, et thermalise la poussière de l'Univers à une certaine température, qui varie localement avec la densité d'étoiles, mais grossièrement de l'ordre du Kelvin. Il existe donc un rayonnement qui est la somme du rayonnement stellaire et du rayonnement thermique induit de la poussière qui y est exposé. La matière étant distribuée de façon anisotrope à courte échelle (préférentiellement dans le plan galactique pour nous sur Terre), le rayonnement observé, s'il émanait des étoiles et poussières, devrait être anisotrope or il est remarquablement isotrope (il est équivalent à une même température quelque soit la direction, au premier ordre). D'autre part, la poussière devrait émettre avec des écarts significatifs au spectre du corps noir. Des mesures plus précises montreront que le fond diffus suit très précisément le spectre du corps noir à une température de 2,7 K.

Distribution des sources radios

La radiométrie permet d'autres tests cosmologiques que la découverte du CMB. En comptant le nombre de sources d'ondes radio en fonction de leur intensité, on peut en effet évaluer la vraisemblance de la théorie de l'Univers stationnaire à partir du raisonnement suivant : Pour un univers stationnaire, il y a autant de sources partout à tout temps (densité $n$ constante), et ils sont partout semblables (luminosité $L$ constante) : $N \propto n d^3$, et $S \propto L/d^2$ alors le nombre $N(\geq S) $ de sources plus "brillantes" que le seuil $S$ évolue comme$ S^{-3/2}$. Ainsi la courbe de $\log S \mapsto \log N$ doit avoir une pente de $-1.5$. (En réalité, toutes les sources n'ont pas la même luminosité, mais suivent une distribution qui est constante dans le cas de l'Univers stationnaire, mais ceci ne change pas fondamentalement le résultat). Dans un Univers en Big Bang, la densité $n$ varie, et la pente de cette courbe doit être plus forte. En réalité, la relation est plus complexe, il faut bien sur tenir compte des effets de l'expansion à redshift élevé[?] Dans les années 1950, une équipe d'astronomes de Cambridge publient plusieurs catalogues de sources d'ondes radio. On découvre alors parmi ces sources les quasars, des objects très caractéristiques (compacts, très lumineux). Martin Ryle argue à partir de ces résultats, que la relation $\log S \to \log N$ présente une pente plus forte que prédite par la théorie de l'état stationnaire (environ -2.5 au lieu de -1.5). Cependant après plusieurs corrections successives Ryle révise son estimation à environ -1.8. D'autres travaux conduisent mêmes à des valeurs proches de -1.5. Il s'ensuit alors une controverse entre Hoyle et Ryle, le premier jugeant irrecevable les conclusions établies à partir de ces observations.

Nouvelles mesures de la constante de Hubble

Un des arguments des défenseurs de l'Univers stationnaire était que l'âge (fini) de l'Univers dans la théorie du Big Bang devait être de quelques milliards d'années, d'après la valeur de la constante de Hubble connue à l'époque. Or, cette valeur était inférieure à certaines estimations de l'âge de la Terre (C. Patterson, G. Tilton et al.  1955) ou d'autres structures. Or, en 1952, Walter Baade découvre qu'il existe deux classes de céphéides variables, avec des corrélations entre luminosité et période différentes. Cela remet en question l'application de la relation luminosité-période basée sur des céphéides d'importe métallicité employée depuis 30 ans pour mesurer les distances des galaxies environnantes. (W. Baade  1956) Baade fait les corrections et nécessaire et trouve une valeur de la constante de Hubble deux fois inférieure à la valeur précédemment estimée (de 500 à 250 km/s/Mpc). Ceci a pour effet de doubler l'âge de l'Univers dans les modèle en Big Bang comme le modèle Einstein-de Sitter. Suite à ces travaux, Allan Sandage découvre d'autres sources d'erreurs dans l'estimation de $H_0$ faite par Hubble en 1929. Par exemple, Hubble avait supposé que les étoiles les plus brillantes étaient de même intensité dans toutes les galaxies, mais Sandage montra qu'il interpréta à tort des objets comme des étoiles alors qu'il s'agissait de régions HII (hydrogène ionisé). Ces objets étant plus brillants, corriger l'erreur conduisit à des valeurs plus grandes des distances des galaxies incriminées, et donc à une diminution de la valeur de $H_0$. En 1958, Sandage publie un papier (Allan Sandage  1958) dans lequel il expose plusieurs corrections à la méthode de mesure de la constante de Hubble et montre que sa valeur doit être comprise entre 50 et 100 km/s/Mpc. L'âge de l'Univers dans les modèles de type Big Bang les plus simples est alors compris entre 6,5 et 13 milliards d'années, montrant que ces modèles ne sont pas exclus par l'âge des structures de l'Univers.

Identification des quasars

En 1963, Maarten Schmidt identifie à l'aide du téléscope Hale à l'observatoire du Mont Palomar un objet nommé 3C 273 extrêmement brillant anormalement éloigné ($z \sim $ 0.16) (M. SCHMIDT  1963) . Ce décalage spectral (redshift) était si élevé qu'il ne fut pas compris tout de suite que la nature inhabituelle du spectre de cet objet était attribuable à un effet doppler. Pour être à la fois si distant et si lumineux, 3C 273 doit émettre $10^{12}$ fois plus de lumière que le Soleil. Dans les années qui suivent les quasar sont identifiés de façon privilégiée à des distances élevées, contestant la nature stationnaire de l'Univers (ce sont des objets anciens).

3C 273, le premier quasar identifié
3C 273, le premier quasar identifié

\begin{equation} N = \dfrac{4\pi n}{3} (a(t) \chi)^3 \end{equation} \begin{equation} S = \dfrac{L}{4\pi d_L^2} = \dfrac{L}{4\pi (1+z) (a(t) \chi)^2} \end{equation} Donc \begin{equation} N(s\geq S,z) = \dfrac{4\pi n}{3} \left (\dfrac{L}{4\pi(1+z)S} \right)^{3/2} \propto \dfrac{1}{\left((1+z)S \right)}^{3/2} \end{equation}

Références

En savoir plus

La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.

Fond diffus cosmologique

Le fond diffus cosmologique (ou "cosmic microwave background", souvent abbrégé CMB) est un rayonnement de type corps noir (sous forme de photons) globalement homogène et isotrope, qui s'est découplé[?] de la matière environ 380 000 ans après le big bang. Depuis, avec l'expansion de l'Univers, celui-ci a refroidi pour atteindre sa température actuelle de 2,7 K. Ce rayonnement a été observé pour la première fois dans les micro-ondes, d'où son appellation anglophone. Il prend son origine dans l'état chaud de l'Univers, et a été libéré lorsque la densité de protons et électrons est devenue suffisamment faible avec le refroidissement pour que les photons interagissent peu avec la matière et voyagent librement. Cette transition est appelée "découplage" et est survenue à $z = 1100$ environ.

Le CMB est décrit comme la plus ancienne image de l'Univers. En effet, les photons émis avant le découplage interagissaient très rapidement avec les particules chargées du milieu (électrons, protons), et leur libre parcours moyen était donc très faible. Après le découplage, les interactions deviennent rares et le libre parcours moyen deviant supérieur à la taille de l'Univers. Les photons peuvent ainsi voyager librement, et le rayonnement de fond observé aujourd'hui correspond assez fidèlement à l'image des photons émis alors.

Premières observations et prédictions

Avant les travaux de Alpher, Gamow et Herman à la fin des années 1940, on pense que le rayonnement dans l'Univers est essentiellement d'origine stellaire (interprétation d'Eddington). La température du milieu interstellaire serait donc la température d'équilibre d'un objet dans ce milieu avec le rayonnement provenant des étoiles. Cette température vérifierait donc : \begin{equation} \sigma T_{univers}^4 = p \end{equation} Où $p$ est la puissance moyenne reçue par unité de surface d'origine stellaire en moyenne dans le milieu interstellaire (il s'agit de la puissance totale, la forme du spectre n'ayant ici pas d'importance). Celle-ci doit valoir, si la luminosité moyenne des étoiles est proche de celle du Soleil, de l'ordre de $L_{\odot}/d^2$ où $L_{\odot}$ est la puissance émise par le Soleil et $d$ la distance moyenne entre étoiles. Selon la région sur laquelle la moyenne $d$ est calculée, la valeur peut beaucoup varier - pour l'Univers observable, $d \sim $ 300 al. Mais globalement cela conduit à une valeur $T_{univers}$ de l'ordre de 0,1 K à quelques kelvins (la valeur étant bien sure plus élevée dans les zones où la densité d'étoiles est plus grande). Dans ce cas, le rayonnement possède une caractéristique particulière : son spectre est celui des étoiles qui l'émettent, c'est-à-dire entre l'IR, le visible et l'UV (soit des températures de rayonnement de quelques milliers à quelques dizaines de Kelvins).

The total light received by us from the stars is estimated to be equivalent to about 1000 stars of the first magnitude. [...] We shall first calculate the energy density of this radiation. [...] Accordingly the total radiation of the stars has an energy density of [...] E = 7.67 10-13 erg/cm3. By the formula E = a T4 the effective temperature corresponding to this density is 3.18 K absolute. [...] Radiation in interstellar space is about as far from thermodynamical equilibrium as it is possible to imagine, and although its density corresponds to 3.18 K it is much richer in high-frequency constituents than equilibrium radiation of that temperature.
Arthur Eddington, 1926

La première observation indiquant la présence du fond diffus cosmologique fut faite en 1940 par McKellar, bien qu'elle ne fut pas comprise comme telle à l'époque. McKellar étudiait avait employé un spectrographe installé à l'Observatoire du Mont Wilson pour mesurer le spectre de plusieurs régions du ciel. Les mesures indiquent notamment la présence d'un doublet associé à des transitions rotationnelles de la molécule $CN$, aux alentours de 4000 MHz. McKellar évalue à partir de cette observation une témparature limite pour le milieu interstellaire d'environ 2,3 K, mais reconnait ne pas être capable de déterminer si cette valeur a vraiment un sens.

La première prédiction cosmologique d'un fond de rayonnement est due à Alpher et Herman. En établissant avec Gamow leur théorie de la nucléosynthèse primordiale dans un Univers en Big Bang, ceux-ci remarquèrent que l'Univers devait être très chaud et surtout dominé par le rayonnement à son orgine. Ils soulignèrent alors que ceci impliquerait la présence aujourd'hui d'un fond de rayonnement vestige de cette ère où les photons étaient très énergétiques et gouvernaient l'expansion. A partir de 1948 ils firent plusieurs estimations de la température actuelle de ce rayonnement, estimée entre quelques Kelvins et quelques dizaines de Kelvins. Cependant, leur théorie de la nucléosynthèse semblait une impasse à l'époque, et leurs travaux ne reçurent pas beaucoup d'attention. La différence majeure avec l'interprétation stellaire du fond de rayonnement est le spectre de celui-ci. Dans le cas d'un rayonnement issu des étoiles, le spectre est globalement autour du visible. Dans l'interprétation d'un rayonnement relique du Big Bang, le spectre est celui d'un corps noir à la température du fond (quelques K). Ainsi, cette température peut être mesurée en trouvant la température $T$ telle qu'un corps noir à cette température corresponde au fond diffus (attendu dans les micro-ondes). Cette valeur doit être plus homogène encore que la température d'équilibre stellaire d'Eddington puisqu'elle ne dépend pas de la position relative de l'observateur avec les étoiles.

Découverte de 1964

Voir l'article

Au cours de l'année 1964, deux astronomes américains, Arno Penzias et Robert Wilson, travaillent sur l'antenne cornet d'Holmdel pour les laboratoires Bell. L'objectif de cet antenne construite en 1959 était de détecter l'écho radar de satellites en forme de ballon agissant comme réflecteur. Les deux physiciens devaient cependant s'en servir pour observer la voie lactée à des longueurs d'ondes aux alentours de 7 cm.
Une des difficultés de cette taĉhe est que le faible niveau du signal requiert l'élimination de nombreuses sources de bruit, et notamment du bruit d'origine thermique, par exemple en refroidissant certains instruments jusqu'à 4 K (hélium liquide). Malgré toutes ces précautions, les deux phyisiciens observèrent en mesurant le signal à une longueur d'onde de 7,35cm (4080 MHz) un bruit irréductible équivalent à une température d'environ 3,5 $\pm$ 1 K, indépendant des saisons, dépendant faiblement de la direction, ce qui semblait écarter une origine galactique. (todo + atmo + récepteur).

Parallèlement, Dicke, Peebles, Roll et Wilkinson réétablissent indépendamment l'existence d'un fond de rayonnement photonique dans l'hypothèse d'un Univers né d'un Big Bang chaud. Ils entreprennent même d'établir un instrument pour mesurer cet hypothétique rayonnement. Penzias finit par avoir vent de leurs recherches, et finit par contacter Dicke par téléphone pour lui exposer leur problème. Celui-ci comprend que le bruit mesuré par Penzias et Wilson doit être ce fameux rayonnement qu'ils cherchaient à mesurer. En 1965, les deux groupes publient simultanément un papier tenant compte de leurs résultats, marquant la découverte du fond diffus cosmologique ou CMB (pour Cosmic Microwave Background).

De nouvelles mesures

La première observation du CMB considérée comme une découverte fut réalisée à une seule longueur d'onde (7,35 cm, soit 4080 MHz) avec l'antenne d'Holmdel. Il était alors possible d'en déduire la température d'un corps noir correspondant mais pas de vérifier que le spectre du rayonnement était bien celui d'un corps noir. Rapidement Penzias et Wilson réalisent une nouvelle mesure avec le même dispositif cette fois à une longueur d'onde

Anisotropies du fond diffus cosmologique

Le fond diffus cosmologique n'est, comme notre Univers, par parfaitement homogène. La carte qu'on en dresse contient donc des anisotropies. Leur mesure peut nous renseigner sur de nombreux paramètres cosmologiques classiques (contenu de l'Univers, constante de Hubble) mais aussi sur les fluctuations primordiales de densité, ces déviations initiales par rapport à l'homogénéité, qui ont donné naissance aux grandes structures de l'Univers.

A l'origine, les inhomogénéités de l'Univers prennent leur source dans ce qu'on appelle les fluctuations primordiales de densité. Ces fluctuations sont représentées par des perturbations au premier ordre de la densité, de la vitesse locale de la matière et du potentiel $\phi$ : \begin{equation}\left\{\begin{matrix} \rho(t, \vec{x}) & = & \bar{\rho}(t)+ \delta\rho (t,\vec{x}) \\ \vec{v}(t, \vec{x}) & = & \vec{\bar{v}}(t,\vec{x}) + \vec{\delta v}(t,\vec{x}) \\ \phi(t,\vec{x}) & = & \bar{\phi}(\vec{x}) + \delta \phi(t,\vec{x})\\ \end{matrix}\right.\end{equation} Où $\vec{x}$ sont les coordonnées comobiles. On peut en déduire une solution perturbative au premier ordre en ces variations en injectant ces définitions dans les équations qui régissent le fluide, à savoir les équations d'Euler et de poisson suivantes : \begin{equation}\left\{\begin{matrix} \dot{\rho} + \nabla \cdot (\rho \vec{v}) = 0 \mbox{ (équation de continuité) } \\ \dot{\vec{v}} + (\vec{v} \cdot \nabla) \vec{v} = -\nabla (\phi + \dfrac{P}{\rho}) \mbox{ (principe fondamental de la dynamique) }\\ \nabla^2 \phi = 4\pi G \rho \mbox{ (équation de Poisson) }\\ \end{matrix}\right.\end{equation} Il apparait alors que la solution dans l'espace "fréquentiel" (après transformée de fourier spatiale $\vec{x}\to\vec{k}$ de $\delta \rho$) est : \begin{equation} \ddot{\delta\rho}(\vec{k}) + 2 H \dot{\delta\rho}(\vec{k}) + \left ( \dfrac{v_s^2 \vec{k}^2}{a^2} - 4\pi G\bar{\rho}\right ) \delta\rho(\vec{k}) = 0 \end{equation} On en déduit deux types de solutions :

  • Si $k < a\sqrt{4\pi G\bar{\rho}}/v_s$, alors les solution sont une croissance sans fin des perturbations.
  • Sinon, les solutions sont des oscillations amorties avec une "constante" de temps $1/H$.

Afin d'exploiter statistiquement les anistropies du CMB, on utilise leur spectre de puissance. Celui-ci provient de la décomposition de la carte de températures en harmoniques sphériques : \begin{equation} a_{lm} = \int \Theta(\theta,\phi) Y_{lm}^{*} (\theta,\phi) d^2 \Omega \end{equation} Ici, $\Theta$ est l'écart à la température moyenne dans une direction donnée : \begin{equation} \Theta(\theta,\phi) = \dfrac{T(\theta,\phi)-\bar{T}}{\bar{T}} \end{equation} D'où on tire le spectre de puissance : \begin{equation} C_l = \sum_{-l \leq m \leq l} \dfrac{|a_{lm}|^2}{2l+1} \end{equation} Le multipôle $l$ représente une échelle angulaire $\pi/l$, donc les coefficients à bas $l$ indiquent la corrélation entre des portions du ciel de grande envergure. Lorsque $l$ est petit, la somme se fait sur un nombre petit de termes, car peu de 'modes $m$' indépendants sont disponibles. Cela implique une erreur statistique de l'ordre de $\sqrt{2/(2l+1)}$ sur $C_l$, qui est indépassable par l'expérience. C'est la variance cosmique.

Spectre de puissance et paramètres du modèle standard de la cosmologie

(Max Tegmark  1995)

La mesure du spectre de puissance des anisotropies du fond diffus cosmologique permet d'en déduire les valeurs des paramètres cosmologiques du modèle standard. Cette section montre comment ces paramètres impactent la forme du spectre. Les graphiques ont été générés à l'aide du programme CAMB (Anthony Challinor, Antony Lewis  2005) . Il représentent la courbe $l\mapsto D_l = l(l+1)C_l/2\pi$.

Constante de Hubble
Spectre TT et constante de Hubble $H_0$
Spectre TT et constante de Hubble $H_0$ (gnuplot | source)
La constante de Hubble $H_0$ est la vitesse de l'expansion aujourd'hui.
On observe, d'après ces courbes, un décalage progressif vers la gauche de la courbe lorsque $H_0$ augmente. C'est assez facile à comprendre : plus la vitesse de l'expansion est élevée, plus les anisotropies grandissent rapidement. Par conséquent, pour une valeur de $H_0$ un peu plus élevée, une même fluctuation densité primordiale engendrera une "tâche" un peu plus grande, et apparaîtra un peu plus à gauche ($l \sim \pi / \theta$) sur le spectre.
Répartition de l'énergie
Spectre TT et densité baryonique $\Omega_b h^2$
Spectre TT et densité baryonique $\Omega_b h^2$ (gnuplot | source)
Spectre TT et densité de matière noire $\Omega_{cdm} h^2$
Spectre TT et densité de matière noire $\Omega_{cdm} h^2$ (gnuplot | source)
Spectre TT et répartition de la matière non relativiste$
Spectre TT et répartition de la matière non relativiste$ (gnuplot | source)
TODO odd bump enhancement due to DM
Courbure
Spectre TT et courbure $\Omega_{k}$
Spectre TT et courbure $\Omega_{k}$ (gnuplot | source)
Les mesures les plus précises du paramètre de courbure $\Omega_k$ sont compatibles avec un Univers plat. Le spectre de puissance TT est représenté ici pour différentes valeurs de $\Omega_k$ correspondant à un univers à géométrie sphérique (-0.2), plat (0), et hyperbolique (+0.2). $\Omega_k$ étant fixé par la somme $\Omega_{m}+\Omega_{\Lambda}$, c'est le paramètre $\Omega_{\Lambda}$ qui varie ici.
Les photons du CMB suivent grossièrement des géodésiques de la métrique FLRW après la recombinaison. Ces géodésiques convergent dans le cas d'une géométrie sphérique, et divergent pour une géométrie hyperbolique. La taille angulaire $\Delta \theta$ d'une fluctuation originant d'une perturbation de taille $\Delta L$ vérifie grossièrement $\Delta \theta \sim \Delta L/d_A(z_{recomb})$ où $d_A(z_{recomb})$ est la distance angulaire d'un objet de taille $\Delta L$ à la recombinaison et vaut : \begin{equation} d_A(z_{recomb}) = c a(t_{recomb}) S_k(\int_{t_{recomb}}^{t_0} \dfrac{dt}{a(t)}) \end{equation} L'expression de $S_k$ dépend de la géométrie de l'Univers. La valeur de l'intégrale est principalement déterminée par l'ère pendant laquelle $a$ était petit après la recombinaison, et alors la matière dominait. Cette intégrale vaut alors simplement $ \int_{t_{recomb}}^{t_0} \dfrac{dt}{a(t)} = \int_{0}^{z_{recomb}} \dfrac{dz}{H_0\sqrt{\Omega_m} (1+z)^{3/2}} \simeq 2/H_0\sqrt{\Omega_m}$. Par ailleurs : \begin{equation}\left\{\begin{matrix} S_k(\chi) & = & R \sin \dfrac{\chi}{R} \mbox{ si } k<0\\ S_k(\chi) & = & \chi \mbox{ si } k=0\\ S_k(\chi) & = & R \sinh \dfrac{\chi}{R} \mbox{ si } k>0 \end{matrix}\right.\end{equation} Et $R = \dfrac{c}{H_0\sqrt{|\Omega_k|}}$ si bien que : \begin{equation}\left\{\begin{matrix} \Delta \theta & \propto & \sqrt{|\Omega_k|}/\sin 2\sqrt{\dfrac{|\Omega_k|}{\Omega_m}} \mbox{ si } k<0\\ \Delta \theta & \propto & \sqrt{\Omega_m}/2 \mbox{ si } k=0\\ \Delta \theta & \propto & {\sqrt{|\Omega_k}|}/\sinh 2\sqrt{\dfrac{|\Omega_k|}{\Omega_m}} \mbox{ si } k>0 \end{matrix}\right.\end{equation} Ainsi, une géométrie sphérique ($\Omega_k < 0$) augmente la taille angulaire des anisotropies, et donc déplace le spectre de puissance vers la gauche, à l'inverse d'une géométrie hyperbolique.
Épaisseur optique
Spectre TT et épaisseur optique $\tau$
Spectre TT et épaisseur optique $\tau$ (gnuplot | source)
L'épaisseur optique mesure l'atténuation du rayonnement fossile par interaction avec la matière de l'Univers. Ainsi, plus $\tau$ est grand, plus cette atténuation est importante et plus le spectre est diminué. L'effet de l'épaisseur optique sur la courbe du spectre de puissance est globalement sa diminution d'un facteur $\sim e^{-2\tau}$.
Fluctuations primordiales
Spectre TT et amplitude des perturbations primordiales de courbure $\Delta R^2$
Spectre TT et amplitude des perturbations primordiales de courbure $\Delta R^2$ (gnuplot | source)
Spectre de puissance $TT$ pour différentes valeurs d'amplitude des perturbations primordiales de courbure $\Delta R^2$.
Comme le souligne l'échelle verticale logarithmique, multiplier la valeur de cette amplitude d'une certaine quantité a pour effet principal de multiplier le spectre de puissance de la même quantité.
Spectre TT et indice spectral des perturbations primordiales scalaires
Spectre TT et indice spectral des perturbations primordiales scalaires (gnuplot | source)
Spectre de puissance $TT$ pour différentes valeurs de l'indice spectral des perturbations primordiales $n_s$.
Les modèles inflationnaires prédisent des perturbations primordiales de la forme $P(k) \propto k^{-3} \left (\frac{k}{k_0}\right) ^{n_s-1}$. Des petites valeurs de $k$ sont corrélées à des grandes échelles angulaires, si bien qu'une valeur de $n_s$ plus grande augmente les perturbations à petite échelle angulaire (haut $l$). Au contraire, une valeur de $n_s$ inférieure favorise les grandes échelles angulaires.

a cessé d'interagir fortement avec la matière (environ 375 000 ans après le début du Big-Bang). Dès lors, les photons du fond diffus ont évolué indépendamment du reste du contenu de l'Univers

Références