La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.
  • 1973 : Robert Wagoner publie les résultats les plus précis alors sur la production d'hélium et de lithium par nucléosynthèse primordiale.

Réintroduction de la nucléosynthèse primordiale

Momentanément oubliée après le succès de la nucléosynthèse stellaire, la nucléosynthèse primordiale, c'est-à-dire la formation de noyaux ayant eu lieu durant le Big-Bang, a connu un grand regain d'intérêt après la découverte du fond diffus cosmologique. Non seulement celui-ci confirme que l'Univers était beaucoup plus chaud dans le passé, et probablement suffisamment pour que des réactions nucléaires aient eu lieu à grande échelle, mais en plus la mesure de sa température est une contrainte expérimentale supplémentaire utile pour mieux tester ces modèles.

Au début des années 1960, les travaux d'Alpher, Follin et Hermann, ainsi que ceux d'Hayashi, ont permis d'obtenir une bonne description de la physique de l'Univers pour une température de l'ordre de la centaine de MeV - au-delà, la physique des particules n'est alors pas encore assez bien connue pour obtenir une meilleure description. A ces températures, l'Univers était constitué de protons et de neutrons (les baryons), d'électrons, de photons, et de neutrinos et antineutrinos. Les réactions entre ces différents constituants étaient suffisantes pour les maintenant en équilibre thermodynamique, et donc une compréhension des phénomènes physiques antérieurs à $\sim$ 100 MeV n'est pas nécessaire. L'Univers est alors décrit par un nombre limité de paramètres, les "conditions initiales", comme le ratio baryons/photons ($=(n_p + n_n)/n_{\gamma}$).

Avec le refroidissement de l'Univers, certaines réactions maintenant l'équilibre thermique sont interrompues. Le ratio protons/neutrons est ainsi constant, et n'évolue plus que par la désintégration spontanée des neutrons d'un temps de demi-vie de l'ordre de la dizaine de minutes. Une fois la température abaissée au dixième de MeV, les réactions nucléaires deviennent prédominantes, c'est le début à proprement parler de la nucléosynthèse primordiale. Afin d'estimer les abondances d'éléments résultantes, il faut alors intégrer toutes les réactions nucléaires et leur sections-efficaces aux calculs. C'est ce travail qui a été repoussé pendant plusieurs années après les derniers apports de Fermi et Turkevich.

Après la découverte du fond diffus cosmologique, la donne change donc très vite. Le Big-Bang parait beaucoup plus vraisemblable et dont la nucléosynthèse primordiale aussi. Par ailleurs, l'abondance des éléments ${}^2_1\textrm{H}$ ${}^3_2\textrm{He}$, ${}^4_2\textrm{He}$ et ${}^{7}\textrm{Li}$, n'a pas encore d'explication satisfaisante, ce qui constitue une autre raison d'envisager des modes de production des éléments autre que la nucléosynthèse stellaire. En 1964, Hoyle et Tayler publient un article intitulé "The mystery of helium abundance" (F. HOYLE, R. J. TAYLER  1964) , dans lequel ils évaluent la vraisemblance d'une explication de l'abondance observée de l'hélium par une synthèse durant un Big-Bang chaud, donc via le mécanisme qu'Alpher et Hermann ont été les premiers à proposer. Ils soulignent, en plus de sa valeur trop élevée ($\textrm{He}/\textrm{H}\sim 0,01$) pour les mécanismes stellaires classiques de formation, l'homogénéité de l'abondance observée de l'hélium. Le fait que celle-ci dépende très peu de l'objet observé, et donc qu'elle soit similaire proche ou loin des sites de production stellaires, et insensible à leur âge, semble indiquer une origine différente. L'abondance observée est très grossièrement en accord avec une production d'origine cosmologique selon leurs calculs, qui prédisent $\textrm{He}/\textrm{H} \sim 0,14$ au minimum (une légère tension avec la valeur expérimentale un peu trop faible est tout de même observée). Ils concluent alors que l'hélium a du être produit à très haute température, comme cela est possible dans le cadre du Big-Bang chaud, ou bien dans des étoiles supermassives. D'autres études similaires sont menées en accord avec ce résultat. En 1967, Robert Wagoner, qui travaille à Caltech auprès de Fowler et Hoyle (B. Bertotti  1990) , publie les résultats d'une simulation impliquant 41 noyaux et 79 réactions faibles et nucléaires (Robert V. Wagoner, William A. Fowler et al.  1967) . Les sections efficaces de toutes ces réactions n'étant pas aisées à déterminer, certaines sont estimées à partir d'autres données (comme les énergies de liaison).

Réseau de réactions nucléaires employé par Wagoner
Réseau de réactions nucléaires employé par Wagoner
Réseau de réactions nucléaires employé par Wagoner. A gauche, l'ensemble des réactions (pour les élements $A\leq 23$) est représenté. A droite, seules les réactions entre éléments légers sont présentées, de façon détaillée.
Les résultats indiquent un bon accord avec les observations d'abondance des éléments légers de l'époque pour une densité baryonique $\rho_b \simeq 2 \times 10^{-28} \textrm{kg}.\textrm{m}^{-3}$, ce qui est raisonnablement proche de la densité critique connue à l'époque ($\rho_c \simeq 10^{-26}\textrm{kg}.\textrm{m}^{-3}$).
Résultats des calculs d'abondance des éléments de Wagoner en fonction de la densité baryonique actuelle
Résultats des calculs d'abondance des éléments de Wagoner en fonction de la densité baryonique actuelle
Le graphe représente l'abondance des éléments (en terme de fraction massique) en fonction de $\rho_b/\theta$ où $\theta = T_0/(\textrm{3 K}$ où $T_0$ est la température du fond diffus cosmologique (donc assez proche de 3 K).
Fort de meilleures données nucléaires, Wagoner publie des résultats améliorés en 1973 (Robert V. Wagoner  1973) . Wagoner débute cet article en donnant 3 arguments en faveur de la nucléosynthèse primordiale :
  • La découverte de galaxies naines bleues jeunes (Bodo Baschek, Wallace L. W. Sargent et al.  1972) et pauvres en $\textrm{O}$ et $\textrm{Ne}$ mais avec une abondance en hélium similaire aux valeurs pour des objets plus anciens.
  • Aucun processus astrophysique ne semble capable de produire autant d'hélium et de lithium qu'observé.
  • L'isotropie constatée du fond de rayonnement désormais mesuré à 2,7$\pm$0,1 K et la nature de corps noir de son spectre sont des arguments très forts en faveur d'une interprétation comsologique.
Le tableau suivant résume la situation expérimentale en 1973 :
Abondance d'éléments légers
Abondance d'éléments légers
Données sur les abondances d'éléments dont la synthèse n'est pas bien expliquée par la nucléosynthèse stellaire seule. (Robert V. Wagoner  1973) .
Wagoner trouve par ailleurs les résultats suivants :
Prédictions d'abondance par Wagoner
Prédictions d'abondance par Wagoner
Prédictions d'abondance (Robert V. Wagoner  1973) .
L'accord avec les valeurs expérimentales est correct et permet de placer une limite supérieure sur la densité baryonique $\rho_b$. Celle-ci doit alors être inférieure à $\rho_b \simeq 7 \times 10^{-27} \textrm{kg}.\textrm{m}^{-3}$, insuffisant pour que $\rho_b = \rho_c$ (densité critique égale à la densité baryonique). Ainsi, d'après ces résultats, l'Univers ne peut-être plat s'il est constitué de matière baryonique seule.

Références

En savoir plus

    La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.

    Équations de Friedmann

    Les équations de Friedmann sont les équations qui décrivent un Univers homogène isotrope obéissant aux équations d'Einstein. Pour un univers de facteur d'échelle $a$, de rayon de courbure $R$ et constitué de différentes formes d'énergie de densités $\rho_i$, de pression $P_i$ et d'équation d'état $f_i(\rho_i,P_i) = 0$ :\begin{equation}\left\{\begin{matrix} \dot{a}^2-\dfrac{8 \pi G}{3c^2} \displaystyle \sum_i \rho_i a^2 & = & \dfrac{kc^2}{R^2} & \mbox{ (1)}\\ \dfrac{d}{dt}\left ( \rho_i a^3 \right ) & = & -P_i \dfrac{d}{dt} \left (a^3 \right) & \mbox{ (2)}\\ f_i(\rho_i,P_i) & = &0 & \mbox{ (3)}\\ \end{matrix}\right.\end{equation} La première équation décrit la dynamique de l'Univers en fonction de son contenu. La seconde équation traduit le premier principe de la thermodynamique. La troisième équation indique simplement la relation entre densité et pression imposée par l'équation d'état de la $i$-ème forme d'énergie. On distingue trois formes d'énergie caractéristiques d'équations d'état particulières :

    • La matière "froide" (aussi dite non relativiste ou poussière). C'est la matière ordinaire massive dont la vitesse est très inférieure à celle de la lumière. Pour un gaz parfait non relativiste, $P/\rho \propto v^2/c^2$ et on peut considérer $P = 0$. L'équation (2) donne alors $\rho a^3 = \mbox{ cste } = \rho_0$.
    • Les rayonnements. C'est la lumière ou de la matière ultrarelativiste comme les neutrinos ($v\sim c$). L'équation d'état est alors $P = \rho/3$. L'équation (2) donne cette fois $\rho a^4 = \mbox{ cste } = \rho_0$.
    • L'énergie du vide. Cette énergie d'équation d'état $P=-\rho$ est équivalente à l'introduction d'une constante cosmologique. Selon l'équation (2), $\rho = \mbox{cste} = \rho_0$.
    • De façon plus générale, pour une énergie d'équation d'état $P=w\rho$ où $w$ est une constante, alors l'équation (2) implique $\rho a^{3(1+w)} = \mbox{cste}$

    Paramètres de densité

    On divise l'équation (1) par le carré de la constante de Hubble actuelle $H_0 = \dot{a}/a (t=0)$, puis on la redivise par $a^2$. On trouve alors : \begin{equation} \dfrac{1}{H_0^2} \left (\dfrac{\dot{a}}{a}\right )^2 - \displaystyle \sum_i \dfrac{\rho_i(t)}{\rho_c} = \dfrac{kc^2}{R^2 H_0^2 a^2} \end{equation} Où l'on a introduit la densité critique $\rho_c$ : \begin{equation} \rho_c = \dfrac{3c^2 H_0^2}{8\pi G} \end{equation} On suppose que l'Univers est constitué de matière froide ($\rho_m = \rho_m^0/a^3$), de rayonnement ($\rho_r = \rho_r^0/a^4$), d'énergie du vide ($\rho_v = \rho_v^0$) et d'une espèce telle que $P = w\rho$ donc $\rho_w = \rho_w^0 a^{-3(1+w)}$. On définit le rapport entre la densité d'une espèce aujourd'hui et la densité critique actuelle comme : \begin{equation} \Omega_i \equiv \dfrac{\rho_i^0}{\rho_c} \end{equation} On définit par ailleurs le paramètre de courbure $\Omega_k$ tel que : \begin{equation} \Omega_k = \dfrac{kc^2}{R^2 H_0^2} \end{equation} Alors la dynamique du facteur d'échelle est donnée par : \begin{equation} \dfrac{1}{H_0^2} \left (\dfrac{\dot{a}}{a}\right )^2 - \left ( \dfrac{\Omega_m}{a^3} + \dfrac{\Omega_r}{a^4} + \Omega_v + \dfrac{\Omega_w}{a^{3(1+w)}}\right ) = \dfrac{\Omega_k}{a^2} \end{equation} Les quantités $\Omega_i$ sont appelées "paramètres de densité", et sont plus souvent utilisées que les densités elles mêmes. Leur valeur indique la proportion d'énergie contenue sous une forme précise. En évaluant l'équation à $t=0$ il vient : \begin{equation} 1-\Omega_m - \Omega_r - \Omega_v - \Omega_w = \Omega_k \end{equation} Cette équation signifie que la courbure de l'Univers est imposée différence entre la densité critique et la densité totale $\rho_{total}$. Une densité totale inférieure à $\rho_c$ implique $\Omega_k > 0$ et donc un Univers hyperbolique. A l'inverse, $\rho_{total} < \rho_c$ implique une géométrie sphérique. Le cas d'égalité correspond à un Univers plat.

    Démonstration

    Solutions particulières de l'équation de Friedmann

    On peut résoudre l'équation de Friedmann dans un certain nombre de configurations particulières. Par exemple on peut considérer en effet que l'Univers est dominé par une certaine forme d'énergie

    Univers de poussière

    Dans un tel univers, $P=0$. De là le facteur d'échelle obéit à l'équation : \begin{equation} \dot{a}^2 - H_0^2\dfrac{\Omega_m}{a} = \dfrac{kc^2}{R^2} = H_0^2 \Omega_k = H_0^2 (1-\Omega_m) \end{equation} Cette équation ressemble beaucoup à l'équation du mouvement d'une particule-test dans le champ gravitationnel d'une masse $M$ (problème à deux corps) : \begin{equation} \dfrac{1}{2}\dot{x}^2 - \dfrac{GM}{x} = E \end{equation} Cela est naturel puisque la matière froide n'est pas relativiste et la matière non relativiste est décrite par la mécanique newtonienne. Il y a alors 3 solutions possibles selon le signe de $k/R^2$, de même qu'il existe trois solutions possibles au problème à deux corps (trajectoire hyperbolique, parabolique ou elliptique).

    • Pour un Univers plat ($k/R^2 = 0$, $\Omega_m = 1$), en expansion, la solution est alors, si $a(0) = 1$ où $t=0$ désigne l'époque actuelle : \begin{equation} a^{3/2}(t) = 1 + \dfrac{3}{2} H_0 t \end{equation} Cet univers "nait" à $t= - \dfrac{2}{3} H_0$ et ne cesse de s'expandre depuis. Son âge est donc $T = \dfrac{2}{3} H_0$.
    • Pour un Univers sphérique ($k/R^2 < 0$, $\Omega_m > 1$), la solution est alors : \begin{equation} \left ( \dfrac{\Omega_m}{\Omega_m-1}\right)^{3/2} \left [ u\sqrt{1-u^2}-\sin^{-1} u\right ]_{ \sqrt{(\Omega_m-1)/\Omega_m}}^{ \sqrt{a(\Omega_m-1)/\Omega_m}} = \mp \sqrt{\Omega_m} t \end{equation}
    • Pour un Univers hyperbolique ($\Omega_m < 1$) : \begin{equation} \left ( \dfrac{\Omega_m}{(1-\Omega_m)}\right)^{3/2} \left [ u\sqrt{1+u^2}-\sinh^{-1} u\right ]_{ \sqrt{(1-\Omega_m)/\Omega_m}}^{ \sqrt{a(1-\Omega_m)/\Omega_m}} = \pm \sqrt{\Omega_m} t \end{equation}
    Preuve :
    Afficher/Masquer
    On réécrit l'équation sous la forme : \begin{equation} \left (\dfrac{da}{dt}\right)^2 - \dfrac{\beta}{a(t)} = \alpha \end{equation} Puis par séparation des variables on en déduit : \begin{equation} \dfrac{da}{\sqrt{\dfrac{1}{a}+\dfrac{\alpha}{\beta}}} = \pm \sqrt{\beta} dt \end{equation} Ceci vaut par ailleurs : \begin{equation} \dfrac{\sqrt{a}da}{\sqrt{1+a\dfrac{\alpha}{\beta}}} = \pm \sqrt{\beta} dt \end{equation} Si maintenant $\alpha > 0$ : On réalise le changement de variable $a\dfrac{\alpha}{\beta} = \sinh^2 x$ (bien défini car $\alpha/\beta > 0$ et par bijection de $\sinh^2$ de $\mathbb{R}^+$ dans $\mathbb{R}^+$). De là $\sqrt{1+a\dfrac{\alpha}{\beta}} = \cosh x$. Par ailleurs, $\sqrt{a} = \sinh(x) \sqrt{\beta/\alpha}$. L'équation différentielle à variables séparées devient : \begin{equation} \dfrac{|\sinh(x)| \sqrt{\beta/\alpha} 2 \beta \cosh x \sinh x dx}{\alpha \cosh x} = \pm \sqrt{\beta} dt \end{equation} C'est-à-dire : \begin{equation} 2\left ( \dfrac{\beta}{\alpha}\right)^{3/2} \sinh^2(x)dx = \pm \sqrt{\beta} dt \end{equation} Or, $\sinh^2(x) = (\cosh(2x)-1)/2$ si bien que cette équation s'intègre simplement : \begin{equation} \left ( \dfrac{\beta}{\alpha}\right)^{3/2} \left [ \dfrac{1}{2}\sinh(2x)-x\right ]_{\sinh^{-1} \sqrt{\alpha/\beta}}^{\sinh^{-1} \sqrt{a\alpha/\beta}} = \pm \sqrt{\beta} t \end{equation} Or ceci est équivalent à : \begin{equation} \left ( \dfrac{\beta}{\alpha}\right)^{3/2} \left [ \sinh(x)\cosh(x)-x\right ]_{\sinh^{-1} \sqrt{\alpha/\beta}}^{\sinh^{-1} \sqrt{a\alpha/\beta}} = \pm \sqrt{\beta} t \end{equation} Et finalement, en remarquant que $\cosh(\sinh^{-1}(u)) = \sqrt{1+u^2}$ : \begin{equation} \left ( \dfrac{\beta}{\alpha}\right)^{3/2} \left [ u\sqrt{1+u^2}-\sinh^{-1} u\right ]_{ \sqrt{\alpha/\beta}}^{ \sqrt{a\alpha/\beta}} = \pm \sqrt{\beta} t \end{equation} Ce qui est la solution recherchée, sous une forme implicite. Si maintenant $\alpha < 0$ : On réalise désormais le changement de variable $a\dfrac{\alpha}{\beta} = -\sin^2 x$. Ceci est possible car la positivité de $\dot{a}^2$ entraine que $a \leq -\dfrac{\beta}{\alpha}$ donc $0 \geq a\dfrac{\alpha}{\beta} \geq -1$. De façon analogue au cas $\alpha > 0$ on peut alors montrer que : \begin{equation} 2\left ( -\dfrac{\beta}{\alpha}\right)^{3/2} \sin^2(x)dx = \mp \sqrt{\beta} dt \end{equation} Et de là : \begin{equation} \left ( -\dfrac{\beta}{\alpha}\right)^{3/2} \left [ x-\dfrac{1}{2}\sin(2x)\right ]_{\sin^{-1} \sqrt{-\alpha/\beta}}^{\sin^{-1} \sqrt{-a\alpha/\beta}} = \mp \sqrt{\beta} t \end{equation} D'où l'on tire la solution : \begin{equation} \left ( -\dfrac{\beta}{\alpha}\right)^{3/2} \left [ u\sqrt{1-u^2}-\sin^{-1} u\right ]_{ \sqrt{-\alpha/\beta}}^{ \sqrt{-a\alpha/\beta}} = \mp \sqrt{\beta} t \end{equation}
    Facteur d'échelle d'un univers dominé par de la matière non relativiste
    Facteur d'échelle d'un univers dominé par de la matière non relativiste (gnuplot)
    Évolution du facteur d'échelle pour un Univers dominé par la poussière et pour différentes valeurs de $\Omega_m$.

    Univers de rayonnement (ou de lumière)

    Un univers dominé par les radiations obéit à l'équation d'état $P = \rho/3$. L'équation (2) donne alors $\rho a^4 = \mbox{ cste } = \rho_0$. Alors l'équation à résoudre est : \begin{equation} \dot{a}^2 - H_0^2 \dfrac{\Omega_r}{a^2} = H_0^2(1-\Omega_r) \end{equation} On suppose par ailleurs $\dot{a} > 0$.

    • La solution en Univers plat est alors simple : $a^2(t) - 1 = 2 H_0 t$
    • Pour $k \neq 0$ ($\Omega_r \neq 1$) \begin{equation} \dfrac{1}{1-\Omega_r} \left [ \sqrt{(1-\Omega_r) a^2+ \Omega_r} - 1 \right ] = H_0 t \end{equation} Si de plus $k<0$ (géométrie sphérique), alors l'Univers atteint une densité minimale ($a \leq \sqrt{\dfrac{\Omega_r}{\Omega_r-1}}$) puis se recontracte. Preuve :
      Afficher/Masquer
      On réécrit l'équation sous la forme : \begin{equation} \left (\dfrac{da}{dt} \right )^2 - \dfrac{\beta}{a^2} = \alpha \end{equation} Qu'on résout par séparation des variables : \begin{equation} \dfrac{da}{\sqrt{\alpha + \beta/a^2}} = \dfrac{a da}{\sqrt{\alpha a^2 + \beta}} = dt \end{equation} Ce qui intégré entre $a(t=0)=1$ et $a(t)$ donne : \begin{equation} \dfrac{1}{\alpha} \left ( \sqrt{\alpha a^2 + \beta} - \sqrt{\alpha+\beta} \right ) = t \end{equation} Cet Univers existe tant que $a^2 \geq - \dfrac{\alpha}{\beta}$. Si $k<0$, alors ceci requiert $a \geq \sqrt{\dfrac{-\alpha}{\beta}} = a_{min}$. Ce facteur d'échelle minimum est atteint pour $t = -\sqrt{\alpha+\beta}$.
    • Facteur d'échelle d'un univers dominé par le rayonnement
      Facteur d'échelle d'un univers dominé par le rayonnement (gnuplot)
      Évolution du facteur d'échelle pour un Univers dominé par le rayonnement pour différentes valeurs de $\Omega_r$.

    Univers d'énergie du vide

    L'énergie du vide a pour équation d'état $P=-\rho$ ce qui après résolution de (2) donne $\rho = \mbox{ cste } = \rho_0$. Dès lors : \begin{equation} \dot{a}^2 - H_0^2 \Omega_{\Lambda} a^2 = H_0^2 (1-\Omega_{\Lambda}) \end{equation}

    • La solution en Univers plat est alors : \begin{equation} a(t) = \exp{\left( H_0 t\right )} \end{equation} Un tel Univers peut alors s'expandre ou se contracter de façon exponentielle.
    • $k>0$, $\Omega_{\Lambda} < 1$ (géométrie hyperbolique) \begin{equation}\left\{\begin{matrix} a(t) = &A\sinh \left [ H_0 \sqrt{\Omega_{\Lambda}}(t+T) \right ] \\ T = &\pm \tau \tanh^{-1} \sqrt{\Omega_{\Lambda}} \\ A = &\sqrt{\dfrac{1-\Omega_{\Lambda}}{\Omega_{\Lambda}}} \\ \tau = & 1/H_0 \sqrt{\Omega_{\Lambda}} \\ \end{matrix}\right.\end{equation} Cet Univers atteint une densité infinie à la date $T$, soit antérieure, soit postérieure à la date actuelle.
    • $k<0$, $\Omega_{\Lambda} > 1$(géométrie sphérique) : \begin{equation}\left\{\begin{matrix} a(t) = &A\cosh \left [ H_0 \sqrt{\Omega_{\Lambda}} (t+T) \right ] \\ T = &\pm \tau \tanh^{-1} 1/\sqrt{\Omega_{\Lambda}} \\ A = &\sqrt{\dfrac{\Omega_{\Lambda}-1}{\Omega_{\Lambda}}} \\ \tau = & 1/H_0 \sqrt{\Omega_{\Lambda}} \\ \end{matrix}\right.\end{equation} Cet Univers atteint une densité maximale à la date $T$, soit antérieure, soit postérieure à la date actuelle.
    • Preuve
      Afficher/Masquer
      L'équation de Friedmann peut être réécrite sous la forme \begin{equation} \dot{a}^2 - \beta a^2 = \alpha \end{equation} En la dérivant il vient alors : \begin{equation} \ddot{a} - \beta a = 0 \end{equation} La solution générale de cette équation a donc pour forme : \begin{equation} a(t) = \lambda \cosh(\sqrt{\beta} t) + \mu \sinh(\sqrt{\beta} t) \end{equation} Par ailleurs $a(0) = 1$ donc $\lambda = 1$. D'autre part $\dot{a}^2(0) = \alpha+\beta$ Donc $\mu ^2 \beta = \alpha + \beta$ et $\mu = \pm \sqrt{1+\dfrac{\alpha}{\beta}}$ Et finalement : \begin{equation} a(t) = \cosh(\sqrt{\beta} t) \pm \sqrt{1+\dfrac{\alpha}{\beta}} \sinh(\sqrt{\beta} t) \end{equation} On veut mettre ceci sous la forme $a(t) = A \cosh {\sqrt{\beta}(t-T)}$. On utilise pour cela la relation $\cosh (x+y) = \cosh(x) \cosh(y) + \sinh(x) \sinh(y)$. On a alors : \begin{equation} A \cosh {\sqrt{\beta}t} \cosh {\sqrt{\beta}T} - A \sinh {\sqrt{\beta}t} \sinh {\sqrt{\beta}T} \\ = \cosh(\sqrt{\beta} t) \pm \sqrt{1+\dfrac{\alpha}{\beta}} \sinh(\sqrt{\beta} t) \end{equation} De cela on tire à la fois $A\cosh {\sqrt{\beta}T} = 1$ et $\pm A\sinh{\sqrt{\beta}T} = \sqrt{1+\dfrac{\alpha}{\beta}}$. Ce qui entraine : \begin{equation}\left\{\begin{matrix} T = & \mp \dfrac{1}{\sqrt{\beta}} \tanh^{-1} \sqrt{1+\dfrac{\alpha}{\beta}} \\ A = & \sqrt{-\dfrac{\alpha}{\beta}} \end{matrix}\right.\end{equation} Ceci n'est donc possible que si $\alpha < 0$. Dans ce cas on a bien : \begin{equation} a(t) = -\sqrt{\dfrac{\alpha}{\beta}} \cosh { \left [ \sqrt{\beta} t - \tanh^{-1} \sqrt{1+\dfrac{\alpha}{\beta}}\right ] } \end{equation} Dans le cas $\alpha > 0$, on peut écrire $a(t)$ sous la forme $A \sinh {\sqrt{\beta}(t-T)}$. On invoque cette fois l'égalité $\sinh (x+y) = \sinh(x)\cosh(y) + \sinh(y)\cosh(x)$. Cette fois il apparait que : \begin{equation}\left\{\begin{matrix} T = & \mp \dfrac{1}{\sqrt{\beta}} \tanh^{-1} \sqrt{\dfrac{1}{1+\dfrac{\alpha}{\beta}}} \\ A = & \sqrt{+\dfrac{\alpha}{\beta}} \end{matrix}\right.\end{equation} Enfin, si $\alpha = 0$, alors $\mu = \pm 1$, donc $a(t) = \exp{\dfrac{1}{\sqrt{\beta}}t}$
      Notons que si l'énergie du vide est l'effet d'une constante cosmologique $\Lambda$ non nulle alors $\Omega_{\Lambda} = \Lambda c^2/3H_0^2$.
      Facteur d'échelle d'un univers dominé par la constante cosmologique
      Facteur d'échelle d'un univers dominé par la constante cosmologique (gnuplot)
      Évolution du facteur d'échelle pour un Univers dominé par la constante cosmologique (ou l'énergie du vide si $w=-1$) pour différentes valeurs de $\Omega_\Lambda$.

    Univers vide

    Un univers vide vérifie simplement l'équation \begin{equation} \dot{a}^2 = H_0^2 \Omega_{k} = H_0^2 \end{equation} Un tel Univers ne peut être de géométrie sphérique ! Il est hyperbolique ou plat en l'absence d'expansion. La solution est alors : \begin{equation} a(t) = \pm H_0 t + 1 \end{equation} L'âge d'un tel Univers (s'il est en expansion) ou son espérance de vie (s'il est en contraction) est alors $T = R/c = 1/H_0$. Un Univers plat et vide est statique.