Une première application de la théorie de la relativité à la cosmologie est due à Einstein lui-même, en 1917 (A. Einstein ) . Il suppose que l'Univers respecte le principe cosmologique, c'est-à-dire qu'il est homogène et isotrope. Il estime aussi que celui-ci doit être statique, et qu'il ne contient que de la matière non relativiste. Il réalise que pour concilier ces hypothèses, il faut introduire un nouveau terme dans l'équation d'Einstein : c'est ainsi qu'il ajoute à son modèle la constante cosmologique. Il trouve par ailleurs qu'un tel Univers doit avoir une courbure positive, c'est-à-dire une géométrie sphérique. Ce modèle, appelé Univers d'Einstein, présente quelques problèmes : d'abord, il est instable. D'autre part, la constante cosmologique, introduite comme paramètre, doit prendre une valeur très précise pour que l'Univers demeure statique.
A cette époque, Einstein correspond avec Willem de Sitter, un physicien néerlandais. Celui-ci propose une alternative à l'Univers d'Einstein en requérant une certaine symétrie entre toutes les coordonnées de l'espace-temps, y compris le temps. Il remarque qu'un tel Univers est une solution du vide - c'est-à-dire en l'absence de toute forme de matière ou d'énergie - des équations d'Einstein avec une constante cosmologique quelconque. Selon la valeur de cette constante, un tel univers peut être en expansion ou au contraire en contraction.
Une alternative à ces deux modèles est présentée quelques années plus tard par Alexandre Friedmann, un physicien et mathématicien russe. En 1922, il publie un article intitulé "Sur la courbure de l'espace", dans lequel il applique l'équation d'Einstein avec une constante cosmologique de valeur quelconque à un Univers homogène, isotrope, de géométrie sphérique ou plate et constitué de matière non relativiste. Cependant, à la différence d'Einstein, il ne le suppose pas statique. Il obtient alors ce qu'on appelle aujourd'hui les équations de Friedmann et trouve que l'Univers peut évoluer de plusieurs façons, comme s'expandre indéfiniment, ou observer une dynamique périodique. En 1924, il montre qu'il existe des solutions de géométrie hyperbolique. Ces résultats purement théoriques - Friedmann ne suggérant aucune expérience ou observation permettant de les confronter n'auront pas d'impact immédiat
Il faut attendre les travaux de Georges Lemaître pour qu'un lien soit établi entre modèle cosmologique et observations astronomiques. En 1927, il propose un modèle qu'il appelle "Univers d'Einstein à rayon variable" (sphérique), c'est-à-dire similaire à celui décrit par Friedmann en 1922, mais avec quelques avancées notoires. En effet, en plus de la présence de matière non relativiste et de l'effet d'une constante cosmologique, Lemaître intègre une composante ultrarelativiste de matière (rayonnement) à ses calculs. Mais surtout, il donne des arguments physiques en faveur de son modèle d'Univers variable. Premièrement, il note que le "modèle A" d'Einstein est pertinent puisqu'il tient compte de la présence de masse dans l'Univers. Mais il montre aussi un résultat très important : un Univers en expansion (comme dans le "modèle B" de De Sitter) peut expliquer la fuite apparente des "nébuleuses spirales" observée par Slipher ! Il est alors naturel de proposer un modèle d'Univers fait de matière et en expansion. Lemaître obtient par ailleurs une relation liant la vitesse apparente de fuite $v$ d'une nébuleuse spirale telle que mesurée par effet doppler, la distance $d$ qui nous sépare de celle ci et le taux d'expansion de l'Univers (de rayon $R$) : \begin{equation} v = \left (\dfrac{c}{R} \dfrac{dR}{dt} \right ) d \textrm{ si } \ v \ll c \textrm{ càd } \ \ d \ll R \end{equation} Ce résultat peut être testé expérimentalement : il suffit de vérifier que la vitesse de fuite de galaxies est proportionnelle à leur distance avec nous. La mesure du coefficient de proportionnalité donne directement la valeur de $K = \frac{c\dot{R}}{R}$. La difficulté est d'évaluer ces distances.