La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.
  • 1931 : G. Lemaître suggère que l'expansion de l'Univers l'a amené d'une taille arbitrairement petite à sa taille actuelle en un temps fini, qu'il explique par la désintégration d'un état dense appelé "atome primitif"
  • 1932 : Einstein et De Sitter proposent un modèle dynamique d'Univers
  • 1948 : F. Hoyle propose un modèle stationnaire de l'Univers, en accord avec le principe cosmologique parfait, dans lequel une création continue de matière compense la diminution de densité due à l'expansion, en contradiction avec le modèle de Lemaître que Hoyle surnomme théorie du "Big Bang"

Nouveaux modèles cosmologique : Big Bang ou Univers éternel ?

Après la découverte de l'expansion de l'Univers par Hubble, Einstein, qui était jusqu'alors sceptique au sujet des travaux de Friedmann et Lemaître sur des modèles cosmologiques non statiques, comprend leur valeur. Ainsi, au début des années 1930, il aide à répandre ces idées parmi les physiciens. En 1932, lui-même et De Sitter proposent un modèle cosmologique minimal (  1932) , auquel on réfère aujourd'hui par le nom d'espace d'Einstein-de Sitter, conforme aux observations de l'époque :

  • Géométrie plate
  • Uniquement constitué de matière non-relativiste, de pression nulle (pas de rayonnement)
  • Sans constante cosmologique
Il s'agit donc d'un Univers de Lemaître-Friedmann à constante cosmologique nulle. Ce modèle permet de déduire la densité de matière dans l'Univers directement à partir de la constante de Hubble $H_0$. On trouve ainsi avec les données de l'époque une densité de $10^{-25} \mbox{ kg.m}^{-3}$. Or il se trouve qu'il s'agit de l'ordre de grandeur de la densité telle qu'évaluée à partir des estimations de distances et masses des galaxies. Un élément majeur de ce modèle est qu'il implique l'apparition d'une singularité initiale : l'Univers semble naitre d'un état de densité infinie (facteur d'échelle nul), et ce il y a un peu plus d'un milliard d'années. Lemaître qui avait déjà remarqué ce fait suggère en 1931 une explication. Il propose que l'Univers soit né de la désintégration d'un "atome" (G. LEMAÎTRE  1931) , un état lié de la matière qui en se pulvérisant aurait engendré l'expansion. Il considère que ceci donne une explication aux rayons cosmiques et que la présence d'autres particules parmi ce rayonnement (alors non prouvée) en accréditerait la vraisemblance. Ainsi, pour Lemaître, cette singularité est tout à fait physique.

En 1948, F. Hoyle pointe quelques problèmes qui suggèrent le besoin de formuler une autre théorie pour l'Univers :

  • Problème de l'Âge de l'Univers : puisque le modèle d'Einstein-de Sitter implique que l'Univers soit né d'une singularité il entraine que celui-ci a un certain âge et que ses structures doivent être plus jeunes : dans ce cadre, et d'après la constante d'Hubble mesurée à l'époque, cet âge doit être d'un peu plus d'1 milliard d'années. Cependant, l'âge de la Terre était estimé à l'époque entre 1.5 et 3 milliards d'années (par des techniques radiométriques).
  • Problème de la formation des galaxies : selon Hoyle, les galaxies n'ont pu se former que lorsque l'expansion est devenue suffisamment lente pour que l'attraction gravitationnelle l'emporte localement, ce qui est inconsistent avec leur âge tel qu'estimé
Hoyle, à la suite de réflexions sur ce sujet avec les physiciens Gold et Bondi, propose alors un modèle d'univers appelé "théorie de l'état stationnaire" (F. Hoyle  1948) visant à résoudre ces problèmes. Dans sa théorie, il fait l'hypothèse que de la matière est créée continuument et de façon homogène - par exemple, sous forme d'atomes d'hydrogène - de sorte à ce que malgré l'expansion la densité d'énergie demeure constante. L'univers étant alors toujours de même densité, il est toujours semblable et n'a plus d'âge.

En 1950 on peut donc considérer qu'il existe deux classes de théories principales :

  • Les univers d'Einstein-de Sitter et Friedmann-Lemaître, avec singularité initiale et âge fini.
  • L'Univers stationnaire de Hoyle
Hoyle critiquera également la théorie de Lemaître de l'atome primitif et l'idée d'un état initial très dense de l'Univers en général par des arguments notamment philosophiques : il apparente la théorie de Lemaître - qui est par ailleurs prêtre - à la Création biblique. Il fera référence à ce modèle qu'il conteste sous le nom de "Big Bang". C'est le premier emploi de cette dénomination dans la cosmologie. Les observations disponibles à l'époque ne permettant pas d'éliminer l'une de ces théories, et le débat prend une tournure philosophique.

Références

En savoir plus

La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.

Équations de Friedmann

Les équations de Friedmann sont les équations qui décrivent un Univers homogène isotrope obéissant aux équations d'Einstein. Pour un univers de facteur d'échelle $a$, de rayon de courbure $R$ et constitué de différentes formes d'énergie de densités $\rho_i$, de pression $P_i$ et d'équation d'état $f_i(\rho_i,P_i) = 0$ :\begin{equation}\left\{\begin{matrix} \dot{a}^2-\dfrac{8 \pi G}{3c^2} \displaystyle \sum_i \rho_i a^2 & = & \dfrac{kc^2}{R^2} & \mbox{ (1)}\\ \dfrac{d}{dt}\left ( \rho_i a^3 \right ) & = & -P_i \dfrac{d}{dt} \left (a^3 \right) & \mbox{ (2)}\\ f_i(\rho_i,P_i) & = &0 & \mbox{ (3)}\\ \end{matrix}\right.\end{equation} La première équation décrit la dynamique de l'Univers en fonction de son contenu. La seconde équation traduit le premier principe de la thermodynamique. La troisième équation indique simplement la relation entre densité et pression imposée par l'équation d'état de la $i$-ème forme d'énergie. On distingue trois formes d'énergie caractéristiques d'équations d'état particulières :

  • La matière "froide" (aussi dite non relativiste ou poussière). C'est la matière ordinaire massive dont la vitesse est très inférieure à celle de la lumière. Pour un gaz parfait non relativiste, $P/\rho \propto v^2/c^2$ et on peut considérer $P = 0$. L'équation (2) donne alors $\rho a^3 = \mbox{ cste } = \rho_0$.
  • Les rayonnements. C'est la lumière ou de la matière ultrarelativiste comme les neutrinos ($v\sim c$). L'équation d'état est alors $P = \rho/3$. L'équation (2) donne cette fois $\rho a^4 = \mbox{ cste } = \rho_0$.
  • L'énergie du vide. Cette énergie d'équation d'état $P=-\rho$ est équivalente à l'introduction d'une constante cosmologique. Selon l'équation (2), $\rho = \mbox{cste} = \rho_0$.
  • De façon plus générale, pour une énergie d'équation d'état $P=w\rho$ où $w$ est une constante, alors l'équation (2) implique $\rho a^{3(1+w)} = \mbox{cste}$

Paramètres de densité

On divise l'équation (1) par le carré de la constante de Hubble actuelle $H_0 = \dot{a}/a (t=0)$, puis on la redivise par $a^2$. On trouve alors : \begin{equation} \dfrac{1}{H_0^2} \left (\dfrac{\dot{a}}{a}\right )^2 - \displaystyle \sum_i \dfrac{\rho_i(t)}{\rho_c} = \dfrac{kc^2}{R^2 H_0^2 a^2} \end{equation} Où l'on a introduit la densité critique $\rho_c$ : \begin{equation} \rho_c = \dfrac{3c^2 H_0^2}{8\pi G} \end{equation} On suppose que l'Univers est constitué de matière froide ($\rho_m = \rho_m^0/a^3$), de rayonnement ($\rho_r = \rho_r^0/a^4$), d'énergie du vide ($\rho_v = \rho_v^0$) et d'une espèce telle que $P = w\rho$ donc $\rho_w = \rho_w^0 a^{-3(1+w)}$. On définit le rapport entre la densité d'une espèce aujourd'hui et la densité critique actuelle comme : \begin{equation} \Omega_i \equiv \dfrac{\rho_i^0}{\rho_c} \end{equation} On définit par ailleurs le paramètre de courbure $\Omega_k$ tel que : \begin{equation} \Omega_k = \dfrac{kc^2}{R^2 H_0^2} \end{equation} Alors la dynamique du facteur d'échelle est donnée par : \begin{equation} \dfrac{1}{H_0^2} \left (\dfrac{\dot{a}}{a}\right )^2 - \left ( \dfrac{\Omega_m}{a^3} + \dfrac{\Omega_r}{a^4} + \Omega_v + \dfrac{\Omega_w}{a^{3(1+w)}}\right ) = \dfrac{\Omega_k}{a^2} \end{equation} Les quantités $\Omega_i$ sont appelées "paramètres de densité", et sont plus souvent utilisées que les densités elles mêmes. Leur valeur indique la proportion d'énergie contenue sous une forme précise. En évaluant l'équation à $t=0$ il vient : \begin{equation} 1-\Omega_m - \Omega_r - \Omega_v - \Omega_w = \Omega_k \end{equation} Cette équation signifie que la courbure de l'Univers est imposée différence entre la densité critique et la densité totale $\rho_{total}$. Une densité totale inférieure à $\rho_c$ implique $\Omega_k > 0$ et donc un Univers hyperbolique. A l'inverse, $\rho_{total} < \rho_c$ implique une géométrie sphérique. Le cas d'égalité correspond à un Univers plat.

Démonstration

Solutions particulières de l'équation de Friedmann

On peut résoudre l'équation de Friedmann dans un certain nombre de configurations particulières. Par exemple on peut considérer en effet que l'Univers est dominé par une certaine forme d'énergie

Univers de poussière

Dans un tel univers, $P=0$. De là le facteur d'échelle obéit à l'équation : \begin{equation} \dot{a}^2 - H_0^2\dfrac{\Omega_m}{a} = \dfrac{kc^2}{R^2} = H_0^2 \Omega_k = H_0^2 (1-\Omega_m) \end{equation} Cette équation ressemble beaucoup à l'équation du mouvement d'une particule-test dans le champ gravitationnel d'une masse $M$ (problème à deux corps) : \begin{equation} \dfrac{1}{2}\dot{x}^2 - \dfrac{GM}{x} = E \end{equation} Cela est naturel puisque la matière froide n'est pas relativiste et la matière non relativiste est décrite par la mécanique newtonienne. Il y a alors 3 solutions possibles selon le signe de $k/R^2$, de même qu'il existe trois solutions possibles au problème à deux corps (trajectoire hyperbolique, parabolique ou elliptique).

  • Pour un Univers plat ($k/R^2 = 0$, $\Omega_m = 1$), en expansion, la solution est alors, si $a(0) = 1$ où $t=0$ désigne l'époque actuelle : \begin{equation} a^{3/2}(t) = 1 + \dfrac{3}{2} H_0 t \end{equation} Cet univers "nait" à $t= - \dfrac{2}{3} H_0$ et ne cesse de s'expandre depuis. Son âge est donc $T = \dfrac{2}{3} H_0$.
  • Pour un Univers sphérique ($k/R^2 < 0$, $\Omega_m > 1$), la solution est alors : \begin{equation} \left ( \dfrac{\Omega_m}{\Omega_m-1}\right)^{3/2} \left [ u\sqrt{1-u^2}-\sin^{-1} u\right ]_{ \sqrt{(\Omega_m-1)/\Omega_m}}^{ \sqrt{a(\Omega_m-1)/\Omega_m}} = \mp \sqrt{\Omega_m} t \end{equation}
  • Pour un Univers hyperbolique ($\Omega_m < 1$) : \begin{equation} \left ( \dfrac{\Omega_m}{(1-\Omega_m)}\right)^{3/2} \left [ u\sqrt{1+u^2}-\sinh^{-1} u\right ]_{ \sqrt{(1-\Omega_m)/\Omega_m}}^{ \sqrt{a(1-\Omega_m)/\Omega_m}} = \pm \sqrt{\Omega_m} t \end{equation}
Preuve :
Afficher/Masquer
On réécrit l'équation sous la forme : \begin{equation} \left (\dfrac{da}{dt}\right)^2 - \dfrac{\beta}{a(t)} = \alpha \end{equation} Puis par séparation des variables on en déduit : \begin{equation} \dfrac{da}{\sqrt{\dfrac{1}{a}+\dfrac{\alpha}{\beta}}} = \pm \sqrt{\beta} dt \end{equation} Ceci vaut par ailleurs : \begin{equation} \dfrac{\sqrt{a}da}{\sqrt{1+a\dfrac{\alpha}{\beta}}} = \pm \sqrt{\beta} dt \end{equation} Si maintenant $\alpha > 0$ : On réalise le changement de variable $a\dfrac{\alpha}{\beta} = \sinh^2 x$ (bien défini car $\alpha/\beta > 0$ et par bijection de $\sinh^2$ de $\mathbb{R}^+$ dans $\mathbb{R}^+$). De là $\sqrt{1+a\dfrac{\alpha}{\beta}} = \cosh x$. Par ailleurs, $\sqrt{a} = \sinh(x) \sqrt{\beta/\alpha}$. L'équation différentielle à variables séparées devient : \begin{equation} \dfrac{|\sinh(x)| \sqrt{\beta/\alpha} 2 \beta \cosh x \sinh x dx}{\alpha \cosh x} = \pm \sqrt{\beta} dt \end{equation} C'est-à-dire : \begin{equation} 2\left ( \dfrac{\beta}{\alpha}\right)^{3/2} \sinh^2(x)dx = \pm \sqrt{\beta} dt \end{equation} Or, $\sinh^2(x) = (\cosh(2x)-1)/2$ si bien que cette équation s'intègre simplement : \begin{equation} \left ( \dfrac{\beta}{\alpha}\right)^{3/2} \left [ \dfrac{1}{2}\sinh(2x)-x\right ]_{\sinh^{-1} \sqrt{\alpha/\beta}}^{\sinh^{-1} \sqrt{a\alpha/\beta}} = \pm \sqrt{\beta} t \end{equation} Or ceci est équivalent à : \begin{equation} \left ( \dfrac{\beta}{\alpha}\right)^{3/2} \left [ \sinh(x)\cosh(x)-x\right ]_{\sinh^{-1} \sqrt{\alpha/\beta}}^{\sinh^{-1} \sqrt{a\alpha/\beta}} = \pm \sqrt{\beta} t \end{equation} Et finalement, en remarquant que $\cosh(\sinh^{-1}(u)) = \sqrt{1+u^2}$ : \begin{equation} \left ( \dfrac{\beta}{\alpha}\right)^{3/2} \left [ u\sqrt{1+u^2}-\sinh^{-1} u\right ]_{ \sqrt{\alpha/\beta}}^{ \sqrt{a\alpha/\beta}} = \pm \sqrt{\beta} t \end{equation} Ce qui est la solution recherchée, sous une forme implicite. Si maintenant $\alpha < 0$ : On réalise désormais le changement de variable $a\dfrac{\alpha}{\beta} = -\sin^2 x$. Ceci est possible car la positivité de $\dot{a}^2$ entraine que $a \leq -\dfrac{\beta}{\alpha}$ donc $0 \geq a\dfrac{\alpha}{\beta} \geq -1$. De façon analogue au cas $\alpha > 0$ on peut alors montrer que : \begin{equation} 2\left ( -\dfrac{\beta}{\alpha}\right)^{3/2} \sin^2(x)dx = \mp \sqrt{\beta} dt \end{equation} Et de là : \begin{equation} \left ( -\dfrac{\beta}{\alpha}\right)^{3/2} \left [ x-\dfrac{1}{2}\sin(2x)\right ]_{\sin^{-1} \sqrt{-\alpha/\beta}}^{\sin^{-1} \sqrt{-a\alpha/\beta}} = \mp \sqrt{\beta} t \end{equation} D'où l'on tire la solution : \begin{equation} \left ( -\dfrac{\beta}{\alpha}\right)^{3/2} \left [ u\sqrt{1-u^2}-\sin^{-1} u\right ]_{ \sqrt{-\alpha/\beta}}^{ \sqrt{-a\alpha/\beta}} = \mp \sqrt{\beta} t \end{equation}
Facteur d'échelle d'un univers dominé par de la matière non relativiste
Facteur d'échelle d'un univers dominé par de la matière non relativiste (gnuplot)
Évolution du facteur d'échelle pour un Univers dominé par la poussière et pour différentes valeurs de $\Omega_m$.

Univers de rayonnement (ou de lumière)

Un univers dominé par les radiations obéit à l'équation d'état $P = \rho/3$. L'équation (2) donne alors $\rho a^4 = \mbox{ cste } = \rho_0$. Alors l'équation à résoudre est : \begin{equation} \dot{a}^2 - H_0^2 \dfrac{\Omega_r}{a^2} = H_0^2(1-\Omega_r) \end{equation} On suppose par ailleurs $\dot{a} > 0$.

  • La solution en Univers plat est alors simple : $a^2(t) - 1 = 2 H_0 t$
  • Pour $k \neq 0$ ($\Omega_r \neq 1$) \begin{equation} \dfrac{1}{1-\Omega_r} \left [ \sqrt{(1-\Omega_r) a^2+ \Omega_r} - 1 \right ] = H_0 t \end{equation} Si de plus $k<0$ (géométrie sphérique), alors l'Univers atteint une densité minimale ($a \leq \sqrt{\dfrac{\Omega_r}{\Omega_r-1}}$) puis se recontracte. Preuve :
    Afficher/Masquer
    On réécrit l'équation sous la forme : \begin{equation} \left (\dfrac{da}{dt} \right )^2 - \dfrac{\beta}{a^2} = \alpha \end{equation} Qu'on résout par séparation des variables : \begin{equation} \dfrac{da}{\sqrt{\alpha + \beta/a^2}} = \dfrac{a da}{\sqrt{\alpha a^2 + \beta}} = dt \end{equation} Ce qui intégré entre $a(t=0)=1$ et $a(t)$ donne : \begin{equation} \dfrac{1}{\alpha} \left ( \sqrt{\alpha a^2 + \beta} - \sqrt{\alpha+\beta} \right ) = t \end{equation} Cet Univers existe tant que $a^2 \geq - \dfrac{\alpha}{\beta}$. Si $k<0$, alors ceci requiert $a \geq \sqrt{\dfrac{-\alpha}{\beta}} = a_{min}$. Ce facteur d'échelle minimum est atteint pour $t = -\sqrt{\alpha+\beta}$.
  • Facteur d'échelle d'un univers dominé par le rayonnement
    Facteur d'échelle d'un univers dominé par le rayonnement (gnuplot)
    Évolution du facteur d'échelle pour un Univers dominé par le rayonnement pour différentes valeurs de $\Omega_r$.

Univers d'énergie du vide

L'énergie du vide a pour équation d'état $P=-\rho$ ce qui après résolution de (2) donne $\rho = \mbox{ cste } = \rho_0$. Dès lors : \begin{equation} \dot{a}^2 - H_0^2 \Omega_{\Lambda} a^2 = H_0^2 (1-\Omega_{\Lambda}) \end{equation}

  • La solution en Univers plat est alors : \begin{equation} a(t) = \exp{\left( H_0 t\right )} \end{equation} Un tel Univers peut alors s'expandre ou se contracter de façon exponentielle.
  • $k>0$, $\Omega_{\Lambda} < 1$ (géométrie hyperbolique) \begin{equation}\left\{\begin{matrix} a(t) = &A\sinh \left [ H_0 \sqrt{\Omega_{\Lambda}}(t+T) \right ] \\ T = &\pm \tau \tanh^{-1} \sqrt{\Omega_{\Lambda}} \\ A = &\sqrt{\dfrac{1-\Omega_{\Lambda}}{\Omega_{\Lambda}}} \\ \tau = & 1/H_0 \sqrt{\Omega_{\Lambda}} \\ \end{matrix}\right.\end{equation} Cet Univers atteint une densité infinie à la date $T$, soit antérieure, soit postérieure à la date actuelle.
  • $k<0$, $\Omega_{\Lambda} > 1$(géométrie sphérique) : \begin{equation}\left\{\begin{matrix} a(t) = &A\cosh \left [ H_0 \sqrt{\Omega_{\Lambda}} (t+T) \right ] \\ T = &\pm \tau \tanh^{-1} 1/\sqrt{\Omega_{\Lambda}} \\ A = &\sqrt{\dfrac{\Omega_{\Lambda}-1}{\Omega_{\Lambda}}} \\ \tau = & 1/H_0 \sqrt{\Omega_{\Lambda}} \\ \end{matrix}\right.\end{equation} Cet Univers atteint une densité maximale à la date $T$, soit antérieure, soit postérieure à la date actuelle.
  • Preuve
    Afficher/Masquer
    L'équation de Friedmann peut être réécrite sous la forme \begin{equation} \dot{a}^2 - \beta a^2 = \alpha \end{equation} En la dérivant il vient alors : \begin{equation} \ddot{a} - \beta a = 0 \end{equation} La solution générale de cette équation a donc pour forme : \begin{equation} a(t) = \lambda \cosh(\sqrt{\beta} t) + \mu \sinh(\sqrt{\beta} t) \end{equation} Par ailleurs $a(0) = 1$ donc $\lambda = 1$. D'autre part $\dot{a}^2(0) = \alpha+\beta$ Donc $\mu ^2 \beta = \alpha + \beta$ et $\mu = \pm \sqrt{1+\dfrac{\alpha}{\beta}}$ Et finalement : \begin{equation} a(t) = \cosh(\sqrt{\beta} t) \pm \sqrt{1+\dfrac{\alpha}{\beta}} \sinh(\sqrt{\beta} t) \end{equation} On veut mettre ceci sous la forme $a(t) = A \cosh {\sqrt{\beta}(t-T)}$. On utilise pour cela la relation $\cosh (x+y) = \cosh(x) \cosh(y) + \sinh(x) \sinh(y)$. On a alors : \begin{equation} A \cosh {\sqrt{\beta}t} \cosh {\sqrt{\beta}T} - A \sinh {\sqrt{\beta}t} \sinh {\sqrt{\beta}T} \\ = \cosh(\sqrt{\beta} t) \pm \sqrt{1+\dfrac{\alpha}{\beta}} \sinh(\sqrt{\beta} t) \end{equation} De cela on tire à la fois $A\cosh {\sqrt{\beta}T} = 1$ et $\pm A\sinh{\sqrt{\beta}T} = \sqrt{1+\dfrac{\alpha}{\beta}}$. Ce qui entraine : \begin{equation}\left\{\begin{matrix} T = & \mp \dfrac{1}{\sqrt{\beta}} \tanh^{-1} \sqrt{1+\dfrac{\alpha}{\beta}} \\ A = & \sqrt{-\dfrac{\alpha}{\beta}} \end{matrix}\right.\end{equation} Ceci n'est donc possible que si $\alpha < 0$. Dans ce cas on a bien : \begin{equation} a(t) = -\sqrt{\dfrac{\alpha}{\beta}} \cosh { \left [ \sqrt{\beta} t - \tanh^{-1} \sqrt{1+\dfrac{\alpha}{\beta}}\right ] } \end{equation} Dans le cas $\alpha > 0$, on peut écrire $a(t)$ sous la forme $A \sinh {\sqrt{\beta}(t-T)}$. On invoque cette fois l'égalité $\sinh (x+y) = \sinh(x)\cosh(y) + \sinh(y)\cosh(x)$. Cette fois il apparait que : \begin{equation}\left\{\begin{matrix} T = & \mp \dfrac{1}{\sqrt{\beta}} \tanh^{-1} \sqrt{\dfrac{1}{1+\dfrac{\alpha}{\beta}}} \\ A = & \sqrt{+\dfrac{\alpha}{\beta}} \end{matrix}\right.\end{equation} Enfin, si $\alpha = 0$, alors $\mu = \pm 1$, donc $a(t) = \exp{\dfrac{1}{\sqrt{\beta}}t}$
    Notons que si l'énergie du vide est l'effet d'une constante cosmologique $\Lambda$ non nulle alors $\Omega_{\Lambda} = \Lambda c^2/3H_0^2$.
    Facteur d'échelle d'un univers dominé par la constante cosmologique
    Facteur d'échelle d'un univers dominé par la constante cosmologique (gnuplot)
    Évolution du facteur d'échelle pour un Univers dominé par la constante cosmologique (ou l'énergie du vide si $w=-1$) pour différentes valeurs de $\Omega_\Lambda$.

Univers vide

Un univers vide vérifie simplement l'équation \begin{equation} \dot{a}^2 = H_0^2 \Omega_{k} = H_0^2 \end{equation} Un tel Univers ne peut être de géométrie sphérique ! Il est hyperbolique ou plat en l'absence d'expansion. La solution est alors : \begin{equation} a(t) = \pm H_0 t + 1 \end{equation} L'âge d'un tel Univers (s'il est en expansion) ou son espérance de vie (s'il est en contraction) est alors $T = R/c = 1/H_0$. Un Univers plat et vide est statique.