La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.
  • 1931 : G. Lemaître suggère que l'expansion de l'Univers l'a amené d'une taille arbitrairement petite à sa taille actuelle en un temps fini, qu'il explique par la désintégration d'un état dense appelé "atome primitif"
  • 1932 : Einstein et De Sitter proposent un modèle dynamique d'Univers
  • 1948 : F. Hoyle propose un modèle stationnaire de l'Univers, en accord avec le principe cosmologique parfait, dans lequel une création continue de matière compense la diminution de densité due à l'expansion, en contradiction avec le modèle de Lemaître que Hoyle surnomme théorie du "Big Bang"

Nouveaux modèles cosmologique : Big Bang ou Univers éternel ?

Après la découverte de l'expansion de l'Univers par Hubble, Einstein, qui était jusqu'alors sceptique au sujet des travaux de Friedmann et Lemaître sur des modèles cosmologiques non statiques, comprend leur valeur. Ainsi, au début des années 1930, il aide à répandre ces idées parmi les physiciens. En 1932, lui-même et De Sitter proposent un modèle cosmologique minimal (  1932) , auquel on réfère aujourd'hui par le nom d'espace d'Einstein-de Sitter, conforme aux observations de l'époque :

  • Géométrie plate
  • Uniquement constitué de matière non-relativiste, de pression nulle (pas de rayonnement)
  • Sans constante cosmologique
Il s'agit donc d'un Univers de Lemaître-Friedmann à constante cosmologique nulle. Ce modèle permet de déduire la densité de matière dans l'Univers directement à partir de la constante de Hubble $H_0$. On trouve ainsi avec les données de l'époque une densité de $10^{-25} \mbox{ kg.m}^{-3}$. Or il se trouve qu'il s'agit de l'ordre de grandeur de la densité telle qu'évaluée à partir des estimations de distances et masses des galaxies. Un élément majeur de ce modèle est qu'il implique l'apparition d'une singularité initiale : l'Univers semble naitre d'un état de densité infinie (facteur d'échelle nul), et ce il y a un peu plus d'un milliard d'années. Lemaître qui avait déjà remarqué ce fait suggère en 1931 une explication. Il propose que l'Univers soit né de la désintégration d'un "atome" (G. LEMAÎTRE  1931) , un état lié de la matière qui en se pulvérisant aurait engendré l'expansion. Il considère que ceci donne une explication aux rayons cosmiques et que la présence d'autres particules parmi ce rayonnement (alors non prouvée) en accréditerait la vraisemblance. Ainsi, pour Lemaître, cette singularité est tout à fait physique.

En 1948, F. Hoyle pointe quelques problèmes qui suggèrent le besoin de formuler une autre théorie pour l'Univers :

  • Problème de l'Âge de l'Univers : puisque le modèle d'Einstein-de Sitter implique que l'Univers soit né d'une singularité il entraine que celui-ci a un certain âge et que ses structures doivent être plus jeunes : dans ce cadre, et d'après la constante d'Hubble mesurée à l'époque, cet âge doit être d'un peu plus d'1 milliard d'années. Cependant, l'âge de la Terre était estimé à l'époque entre 1.5 et 3 milliards d'années (par des techniques radiométriques).
  • Problème de la formation des galaxies : selon Hoyle, les galaxies n'ont pu se former que lorsque l'expansion est devenue suffisamment lente pour que l'attraction gravitationnelle l'emporte localement, ce qui est inconsistent avec leur âge tel qu'estimé
Hoyle, à la suite de réflexions sur ce sujet avec les physiciens Gold et Bondi, propose alors un modèle d'univers appelé "théorie de l'état stationnaire" (F. Hoyle  1948) visant à résoudre ces problèmes. Dans sa théorie, il fait l'hypothèse que de la matière est créée continuument et de façon homogène - par exemple, sous forme d'atomes d'hydrogène - de sorte à ce que malgré l'expansion la densité d'énergie demeure constante. L'univers étant alors toujours de même densité, il est toujours semblable et n'a plus d'âge.

En 1950 on peut donc considérer qu'il existe deux classes de théories principales :

  • Les univers d'Einstein-de Sitter et Friedmann-Lemaître, avec singularité initiale et âge fini.
  • L'Univers stationnaire de Hoyle
Hoyle critiquera également la théorie de Lemaître de l'atome primitif et l'idée d'un état initial très dense de l'Univers en général par des arguments notamment philosophiques : il apparente la théorie de Lemaître - qui est par ailleurs prêtre - à la Création biblique. Il fera référence à ce modèle qu'il conteste sous le nom de "Big Bang". C'est le premier emploi de cette dénomination dans la cosmologie. Les observations disponibles à l'époque ne permettant pas d'éliminer l'une de ces théories, et le débat prend une tournure philosophique.

Références

En savoir plus

La rédaction de contenu n'est pas achevée. Les informations peuvent être incomplètes ou contenir des erreurs.

Constante de Hubble

La constante de Hubble est la constante de proportionnalité $H_0$ qui lie le décalage spectral $z=\lambda_{rec}/\lambda_{em}$ d'un objet céleste vu par un observateur à la distance entre les deux, dans la limite où cette distance est petite. Historiquement, la fuite des galaxies était interprétée en terme d'effet Doppler à faible vitesse pour lequel $z \simeq v/c$. On écrivait donc $v = z c = H_0 d$. Sa première estimation "précise" est due à Hubble en 1929 et était d'environ 500 km/s/Mpc, mais la méthode qui conduisit à cette valeur comportait une erreur. Aujourd'hui on l'évalue à 70 km/s/Mpc.

Démonstration de la relation entre taux d'expansion et distance et de la loi de Hubble

Afficher/Masquer
Un objet émet un signal lumineux dès l'instant $t_e$ et celui-ci est reçu par l'observateur à l'instant postérieur $t_r$. Le signal ayant une certaine période $T_e$, un second "bip" est émis à un instant $t_e+T_e$ et est reçu par l'observateur à un instant $t_r+T_r$. On suppose l'observateur ainsi que la source immobiles dans l'espace en expansion (càd "comobiles"). Les deux signaux parcourent donc la même distance comobile $\chi$ : \begin{equation} \chi = \displaystyle\int_{t_e}^{t_r} \dfrac{cdt'}{a(t')} = \displaystyle\int_{t_e+T}^{t_r+T'} \dfrac{cdt'}{a(t')} \mbox{ (1)} \end{equation} L'intégrale de droite peut être décomposée en trois si bien que : \begin{equation} \displaystyle\int_{t_e}^{t_r} \dfrac{cdt'}{a(t')} = \displaystyle\int_{t_e+T_e}^{t_e} \dfrac{cdt'}{a(t')} + \displaystyle\int_{t_e}^{t_r} \dfrac{cdt'}{a(t')} + \displaystyle\int_{t_r}^{t_r+T_r} \dfrac{cdt'}{a(t')} \end{equation} Donc \begin{equation} \displaystyle\int_{t_e}^{t_e+T_e} \dfrac{cdt'}{a(t')} = \displaystyle\int_{t_r}^{t_r+T_r} \dfrac{cdt'}{a(t')} \end{equation} La période $T$ a vocation à être très petite devant le temps de variation de $a$ (l'expansion de l'Univers pendant un cycle de lumière - $10^{14}$ Hz dans le visible - est négligeable). Ainsi l'expression ci-dessus devient : \begin{equation} \dfrac{T_r}{T_e} = \dfrac{a(t_r)}{a(t_e)} \end{equation} Soit en terme de l'ongueur d'onde et de redshift $z$ : \begin{equation} 1+z \equiv \dfrac{\lambda_r}{\lambda_e} = \dfrac{a(t_r)}{a(t_e)} \end{equation} On constate qu'un Univers en expansion se traduit bien par un allongement des longueurs d'ondes. Pour de faibles distances, $t_r - t_e \simeq d/c$, et donc $a(t_e) \simeq a(t_r) - d \dot{a}(t_r)/c$. Par ailleurs si $t_r$ correspond au temps présent, alors $a(t_r) = 1$ et $\dot{a}(t_r) = H_0$ donc : \begin{equation} z = \dfrac{\lambda_r-\lambda_e}{\lambda_e} \simeq H_0 d / c \end{equation}

Mesures de la constante de Hubble

Avant les années 1990, la valeur de la constante de Hubble était très mal connue. De cette époque on a maintenu l'habitude d'employer par commodité le paramètre sans dimension $h = \dfrac{H_0}{\textrm{100 km/s/Mpc}}$ qu'on s'attendait valoir entre 0.5 et 1. Aujourd'hui, les mesures employent des méthodes assez diverses (plus uniquement l'utilisation de céphéïdes comme chandelles standard), et les valeurs sont en assez bon accord, malgré une petite tension :

Je me souviens d'un post très drôle de LPFR sur Futura-Sciences qui disait en substance, en réponse à une personne qui demandait si la constante de Hubble était variable (cette personne confondait bien-sûr le paramètre de Hubble $H(t)$ et la constante de Hubble qui est sa valeur au temps présent donc bien une constante) :

La constante de Hubble a beaucoup plus changé au cours des décennies qui ont suivi sa découverte que depuis le Big-Bang.
LPFR, 2012
C'est assez drôle mais assez vrai. La première valeur de Hubble était près de dix fois trop grande, et après les travaux de Sandage (qui restreignait $H_0$ à l'intervalle 50-100 km/s/Mpc), il fallut encore plusieurs décennies pour décider à quelques pourcents près.

Références